Blog

In the upcoming release of STAR-CCM+ v10.04, we have implemented a new equilibrium motion type for DFBI bodies is used for simulating the motion of moving bodies that tend towards a steady state equilibrium position. With this feature the body is incrementally ‘teleported’ to the current best estimate of the equilibrium position rather than allowing it to oscillate freely about it.

Just weeks after announcing that we had broken a “world record” by scaling STAR-CCM+ across 55,000 cores on the 1.045 PetaFLOP Hermit cluster, we are pleased to announce that we’ve smashed it already, by scaling up to 102,000 cores on NCSA’s Blue Waters supercomputer, which included running a 1 billion cell aerodynamics simulation. Blue Waters is one of the most powerful supercomputers in the world*, and is the fastest supercomputer on a university campus.

Of course, lots of CFD vendors have claimed a “world record” from time to time. And I’m sure someone will break it again soon. But what does any of this mean in the real world? How does it help you as an engineer?
STAR-CCM+ Power Licensing

We know a good scientific visualization when we see one – colormaps are a big part of this and when used effectively, they can make all the difference. The ability to create your own colormap within STAR-CCM+Ⓡ has been around for a long time and around this time last year, we delivered a full featured interactive colormap editor with the v9.04 release.

Still, what makes for a good colormap is not common knowledge. Surprisingly, the most frequently used colormap for scientific visualization, the rainbow colormap, is regarded as one of the least effective.

In this blog I'll tell you how to choose the most effective colormap for you application, allowing you to present your results in a more attractive, more informative way.

New colormaps in STAR-CCM+ v10.04

Prometheus (which literally means "forethought"), was a Titan whom Zeus had defeated. He was given a task to go to earth and make its creatures. He crafted human beings and gave them arts and culture. But they were suffering and terribly shivering in the cold. So against Zeus’ direct wishes, he also gave “fire“ to mankind. Little did humans know that this gift meant literally they would have to “play with fire”. In order to have control over the the wild rage, as wise as they were, humans started to investigate it in more scientific ways. But they found it wasn’t very easy. In fact it was so complicated, even schoolbook combustion examples would have stiff and difficult to solve ODE systems…

Getting All Fired Up About DARS!

You might have noticed our recent announcement that STAR-CCM+® has “maintained perfect scalability” across 55,000 cores on the 1.045 PetaFLOPS Hermit cluster, at the High Performance Computing Cluster Stuttgart (HLRS). This announcement made me smile for two reasons. The first was that one of our competitors has recently been bragging about running a simulation on 10,000 cores. Well done for that! But, more importantly, because I’ve spent a lot of time recently interviewing the founders of our company for an article that I’ve written about our 35th Anniversary. One of the recurring themes in those interviews was that of computing that they had access to in the early days of the company. adapco’s first computer was a VAX 11/750, described by Steve MacDonald as being “about the size of a washing machine.” This computer, which cost a cool $200k (adjusted for inflation), was capable of performing a massive 120,000 floating point operations per second.
VAX 11/750

VAX 11/750: 1980 supercomputer disguised as a washing machine

How does that compare to modern computers? Or even the phone in your pocket?

And so with anticipation, I opened an email from my German colleague, Nicole Vasold, with the words ‘bottle’ and ‘wine’ in the subject line. Maybe she wanted to send me a note about a very belated Christmas gift coming my way? My excitement however turned to horror when I realized the email was all work and no play, or should I say ‘All glass and no wine’? She had shared her latest work on simulating the glass coating process of a wine glass, another addition to the growing use of simulation in the glass manufacturing industry.

One of the key technical challenges facing those of us involved in engineering simulation in the oil and gas industry is multiphase flow. In every part of the production process, from extraction to refinery, we typically have to account for the combined influence of gases, liquids and solids.

The release of STAR-CCM+ 10.02 in March 2015 offers a number of new modeling approaches that could transform the way in which engineers in the oil and gas industry are able to deliver simulation results for the many problems that involve multiphase flow.

Research into the oxidative coupling of methane has been ongoing for more than 2 decades, with the potential payoff being the ability to produce ethylene at much lower costs. In this process, methane is selectively reacted with oxygen in presence of a catalyst to produce ethylene (instead of completely reacting it to water and carbon dioxide). There are two major hurdles to overcome in implenting this process: firstly we need to find a catalyst that has high selectivity; and secondly we need to be to scale-up this process.

Recently, I sat down with Alex Smith from the Centre for Process Innovation (CPI), a UK-based technology innovation centre that uses knowledge in science and engineering combined with state-of-the art facilities to enable their clients to prototype and scale up the next generation of products and processes. Alex is a recent recruit who is just approaching his first work anniversary with CPI. He is a Senior Process Engineer within their Industrial Biotechnology and Biorefining (IB&B) unit and it hasn’t taken him very long to get his hands dirty with simulation work. He is currently balancing his time mostly between developing their CFD capability, both in model development and training of future users, and working on some more 'standard' process engineering tasks such as plant improvement and troubleshooting exercises.
STAR-CCM+ velocity mixing profile courtesy of CPI

When asked about the amount of time he spent on his speech preparation, Woodrow Wilson responded: “That depends on the length of the speech. If it is a ten-minute speech it takes me all of two weeks to prepare it; if it is a half-hour speech it takes me a week; if I can talk as long as I want to it requires no preparation at all. I am ready now.” Perhaps some of us can relate to former President Wilson’s remarks. Without any time constraints, exploring a .sim file, or maybe several, in detail, could be an engaging and informative exercise lasting the better part of an afternoon. Yet more often than not, we only have that brief ten minutes to share our story. And, quite often, review requests come on short notice. What if you could quickly assemble and effectively communicate your results from several simulations in a matter of minutes? What if you could walk from one meeting room to the next, with laptop in hand, and be able to quickly collaborate with different teams? As it turns out, there is a way: STAR-View+, new and improved.

Pages

Subscribe to RSS - blogs
Brigid Blaschak
Communications Specialist
Matthew Godo
STAR-CCM+ Product Manager
Stephen Ferguson
Marketing Director
Dr Mesh
Meshing Guru
Joel Davison
Lead Product Manager, STAR-CCM+
James Clement
STAR-CCM+ Product Manager
Sabine Goodwin
Director, Product Marketing
Prashanth Shankara
Technical Marketing Engineer