Library

2216 match your search

STAR-CCM+ v9.06版本近期发布。这一版本使模拟现实到达了一个新的水平。通过在软件操作中控制对设计性能可能有较大影响的一些参数,使得用户更加接近于最终产品。另外,技术的改进使这一功能的精度更具真实性。 "STAR-CCM+ v9.06 新功能介绍"在线研讨会将于2014年11月27日举行,介绍 STAR-CCM+ v9.06 新增功能, CD-adap China诚邀您注册参会!
Sandia Flame Validation
Geometry is a piloted methane jet flame based on the Sandia/TUD Piloted CH4 Air Jet Flame validation case. In the animation, the temperature in the extreme left remains at 300 K for a certain distance along the centerline as it is the potential core of the developing jet. 1) Momentum driven jets are often seen in burners (used in CPI and oil and gas industry) as well as Flares (again predominantly being used in CPI and oil and gas industry) 2) The LES technique captures the complex mixing features which influences the flame stability, combustion efficiency, and pollutant formation. 3) Volume-...
流体構造連成解析機能(FSI)のご紹介ウェビナー
STAR-CCM+は流体解析とあわせて、固体の移動や変形を伴う構造解析を扱う事が可能です。 STAR-CCM+のみで行う方法や、外部の固体応力ソルバーと連成解析を行う方法があります。 本ウェビナーでは、流体構造連成解析機能の基本的な機能やワークフローの紹介、言葉の定義等、 流体構造連成解析を行う上で基本的な内容をアニメーションや事例等を用いてご紹介します。
A CD-adapco tem o prazer de anunciar o workshop: Simulação nas indústrias Subsea, Offshore e Naval. Se você trabalha com simulações CFD não perca a oportunidade de discutir com nossos palestrantes sobre as últimas inovações da área.
As an attendee, you will receive firsthand knowledge of how companies apply design-time settings for the simulation of heat transfer in forced convection, conduction, and thermal and solar radiation scenarios. A discussion on the calculation and interpretation of heat transfer coefficients will follow.
2D simulation is a great way to test out designs and boundary conditions, personally I use it all the time when I am setting up a complex case for the first time or just playing with a new feature. Historically in STAR-CCM+ there wasn’t a pipelined way to build and run 2D meshes, but now with version 9.06 there are two new features that will put that problem to rest.
Being able to plot solution quality metrics while your simulation is running, that is, live-processing as opposed to post-processing, is one of the most distinctive functional aspects of STAR-CCM+. This lets you critically interrogate your results and make changes on-the-fly, thereby increasing your productivity. There are many very capable 3rd party plotting tools available. However working with them requires exporting and importing data, adding several steps to your workflow and making it difficult to automate. Still, there’s an argument to be made that plotted results need to be legible and, to a degree, customizable. With this release, we have targeted visual plot quality as an area for improvement.
When we initially consider the analysis of unsteady phenomena in turbomachinery, aeroelasticity and aeroacoustics, we’re quickly confronted by the simulation cost – transient analyses by their very nature will simply take longer to run compared to steady ones. And for these types of problems, where the simulation objectives (understanding of flutter and limit cycle oscillations for example) demand a time-dependent treatment, the time steps need to be small and the physical time required can be long. Not that this isn’t challenging enough, usually, the entire machine needs to be modeled at a high level of spatial fidelity, thereby driving up the size and cost of the analysis even further. But, all is not lost– enter the Harmonic Balance method, first introduced with STAR-CCM+ 4.04 in 2009, capable of delivering at least a 10-fold reduction in your time to a solution. And, that’s not the only benefit to be had with this approach – it’s possible to mesh just a single blade passage through all the blade rows in your machine and obtain a solution which varies from blade-to-blade, capturing critical blade row interactions.

ページ