CFD analyses of liquid metal flow in sub-channels for Gen IV reactors

Printer-friendly versionPDF version
Nuclear Engineering and Design
Pages: 
4391-4403
Volume: 
241
Issue: 
11
Date: 
Tuesday, November 1, 2011
DOI: 
http://dx.doi.org/10.1016/j.nucengdes.2011.01.023

Some of the limitations of Reynolds Averaged Navier Stokes (RANS) based Computational Fluid Dynamics CFD codes in computing the flow and temperature field in a rod-bundle are well known. An in-house validation campaign has indicated that the Baseline Reynolds Stress Model (BSL-RSM) with automatic wall treatment is preferred for RANS analyses of a rod-bundle using the CFX code.

As a first step in the present paper, the employed CFX code has been assessed with the analyses of a liquid sodium flow in a rod-bundle as in the TEGENA (TEmperatur- und GEschwindigkeitsverteilungen in Stabbündel mit turbulenter NAtriumströmung) experiment. For this RANS analysis, the full cross-section is modelled to avoid numerical issues associated with symmetric boundary conditions.

The influence of pitch-to-diameter ratio (p/d) and rod arrangements on thermal-hydraulics is analyzed by applying the assessed modeling approach. For this purpose, rod-bundles with different p/d are arranged in a square and triangular lattice. The computational sub-channels make use of periodic boundary conditions. RANS computed axial velocity normalized with the friction velocity shows the presence of a logarithmic outer region for both arrangements. Similar behavior was reported based on a Large Eddy Simulation (LES) approach. The analyses reveal that the intensity of secondary flow increases with decreasing p/d for both arrangements. RANS analyzed normal Reynolds stresses normalized with centerline velocity in the smallest gap of rod-bundle reveal their anisotropy. Furthermore, the analyses show that the Nusselt numbers increase with p/d for described flow conditions and for both arrangements. Following observations of flow oscillations in a tight lattice rod-bundle as in Hooper's experiment, as a final step, unsteady RANS simulations for hydraulic analyses using a rod-bundle with small p/d are presented with two commercial CFD codes, namely, CFX and STAR-CCM+. In particular, the analysis of Hooper's hydraulics experiment with a tight lattice rod-bundle having a p/d of 1.1 demonstrates the existence of flow oscillations or instabilities as inferred in the experiment.

Rights: 
2011 Elsevier B.V.
Author Name: 
Laltu Chandra
Ferry Roelofs
Industries: 
Products: